Category Archives: planet

..and the height is even a little less

Replacing your desktop laptop with a ITX workstation

If you use your laptop as a desktop replacement, you will at some point get an external display and a mouse/ keyboard for more convenient usage.
At this point the laptop becomes only a small case of non-upgradable components.

Now you could as well replace your laptop by a real case of comparable size.  This will make your PC not only easily upgradable, but allow higher-end components while being more silent at the same time.

Continue reading

Streaming the Screen on Android

In this post I want to discuss way of getting the screen content of your Android device to the TV or monitor. If you wonder why one might want to do such a thing – just think about playing some Android games with a bluetooth gamepad or watching a movie where your PC is not available.

Specifically I want to introduce SlimPort. SlimPort is a feature of Nexus devices which is unfortunately not covered much in reviews.
Basically SlimPort is DisplayPort over the Micro-USB connection of your device allowing you to mirror its display.

But the future has arrived: we got Miracast!

One might wonder why one should go through the hassle of using a old-school HDMI cable.
You can get a Chromecast Stick for 35$ and nowadays it also supports Miracast so you can simply stream the images over WiFi.

Well Miracast is all nice if all you need to do is to put up some slides without carrying all possible adapters with you. But as soon as you try to stream a movie or a game you will reach its limitations.

Remember that Miracast works by grabbing the Framebuffer and compressing it with H.264. While encoding happens in hardware it still takes some time and it inevitably introduces compression artifacts. This means:

  • in games you get a noticeable lag – especially in FullHD
  • in movies you get noticeable artifacts – especially in FullHD
  • in both cases your battery will get drained for heavy WiFi and Encoder usage

Going old-school

Going with the old-school cable on the other hand you get HDMI 1.4 transfer rates for up to 1080p at 60Hz while saving the battery.

Configuring the second screen is quite straightforward in android. As Mirroring is your only option, there is actually nothing to configure. Once you connect the adapter android will set up your monitor based on its EDID information and transfer image and audio over HDMI.
In case you only want to have the image over HDMI, simply attach your speakers to the phone and android will re-route the audio.
The days where you had to manually set up everything are over.

Furthermore most adapters have an micro-USB port allowing to still charge your phone while using SlimPort.

Device Support

The downside is that most of the devices do not support SlimPort. The device list more or less boils down to

  • Google Nexus 4/ 5
  • Google Nexus 7 (2013)
  • LG G2/ G3

Samsung devices go with the alternative MHL. Comparing these two SlimPort has the bandwidth advantage of 5Gb/s vs. 3Gb/s of MHL so it does not have to compress that much. However both are clearly better than going wireless.

 

Secure Owncloud Server

This article is about how to securely configure the machine where your Owncloud instance will be running.
Even if you set-up your connection with Owncloud in a secure way,  your data still can be compromised by exploiting security flaws in the underlying architecture.

In the following we specifically will cover the underlying software stack and brute-force password hacking attempts.

Continue reading

How to manually update a deb package from source

Probably everyone has encountered a package in Ubuntu which was not the newest released version while one for some reason needed the newest one. The first step is to search for a PPA with the desired version. But what if there is no such PPA or you want to build the version yourself? This is where this guide comes in. Note however that this is not aimed at ordinary users – you need some experience with programming/ compiling to successfully build a package.

Before you start

Before you start make sure that you have source packages enabled in your software sources.
Next you obviously need the upstream source tar-ball of the new program which should look something like <packagename>-<version>.tar.gz.
Download this tar-ball to a new directory <somedir> and extract it there.

Updating Package info

For the following commands I assume you are in the previously created directory <somedir>.

First we need to get the old version of the source package

apt-get source <packagename>

This will download and extract the old source package into <packagename>-<oldversion>.

Now we need some helper scripts to perform the upgrading as well as the build-time dependencies of the package

sudo apt-get install dpkg-dev devscripts fakeroot
sudo apt-get build-dep <packagename>

Next change into the extracted sources of the old package and update the packaging

cd <packagename>-<oldversion>
uupdate -v <newversion> ../<packagename>-<newversion>.tar.gz

# change into the extracted new package
cd ../<packagename>-<newversion>

# update version info
dch -l ~ppa -D $(lsb_release -sc)

For more information see the Debian New Maintainers Guide.

Building the program

To trigger a rebuild of the program simply execute

dpkg-buildpackage

Uploading your version to a PPA

To upload a package to a PPA you first need to sign it to prove that you are the author. To do this you have to execute the following in the <packagename>-<newversion> directory

debuild -S

Furthermore you need the upload tool dput to actually perform the uploading

sudo apt-get install dput

Now change to <somedir> and execute

dput ppa:<your_username>/<repository> <source.changes>

You can find more information at Launchpad.

Secure Owncloud setup

While the Owncloud Manual suggests enabling SSL, it unfortunately does not go into detail how to get a secure setup. The core problem is that the default SSL settings of Apache are not sane as in they do not enforce strong encryption. Furthermore the used default certificate will not match your server name and produce errors in the browser.

In the following a short guide in how to set-up a secure Apache 2.4 server for Owncloud will be presented.

Continue reading

How to root Android using Ubuntu

The Big Picture

Android consists of three parts relevant to rooting

  1. the bootloader
  2. recovery system
  3. main system

typically only the main system is running, that is the Linux Kernel, the launcher, the phone app etc.. If we talk about rooting, that means we want to add an additional app to the main system which may access secured parts of the main system and also acts as a gatekeeper for other apps that want to get access too.

The problem is that we need access to the secure parts of the system in order to do so, which means that we cant simply install that app (e.g. an apk) from within the main system.

This means we have to go one level down. This is where the recovery system is. Typically you do not see it, as it is only active when the main system can not run – either because a system update is installed or because you do a factory reset.
As the recovery system can do a full system update, it means that it has also access to the secured parts of the main system – exactly what we need. Unfortunately the stock recovery system does not allow installing apps, so we have to replace it.
But before that we have to talk about the bootloader.

The bootloader is a tiny piece of software which decides wether to start the recovery or the main system (or another main system, like Ubuntu Phone). But in the default configuration in only starts systems that it knows and trusts. In this configuration the bootloader is called locked. Although it prevents malicious software to change the phone and spy on us, it also prevents us from replacing the recovery system. This concept is also coming to the PC btw where it is called secure-boot.

Here is a graphical overview of the Android components:

android-brs

So what we need to do in order to get root access is

  1. unlock the bootloader
  2. replace the recovery system
  3. install a superuser app

Note that unlocking the bootloader also allows attackers to circumvent any of the android security features. It is possible directly access all the files on the phone from the bootloader.
Therefore android will wipe all userdata when the bootloader is unlocked

Preparations

First you need to install the fastboot binary to be able to perform low-level communication with the device

apt-get install android-tools-fastboot

Next you have to allow non-root users to execute commands over USB, so you do not have to run fastboot as root. For this create the file

/etc/udev/rules.d/51-android.rules

with the following content

SUBSYSTEM=="usb", ATTR{idVendor}=="<VENDOR>", MODE="0666", GROUP="plugdev"

you can find the value for <VENDOR> on the page linked here.

Finally you have to reboot into fastboot mode. Usually there is a key combination you have to press on startup.

Remember this key combination as you will need some more times.

Samsung Devices however, like the Galaxy S3, do not support the fastboot mode – instead they have a download mode, which uses a proprietary Samsung protocol. To flash those you have to use the Heimdall tool. While this article does not cover the heimdall CLI calls, the general discussion still applies.

Unlocking the Bootloader

for google devices, like a Nexus 4 or Nexus 7 it is just

fastboot oem unlock

if you have a Sony Xperia device, like a Xperia Z, you additionally have to request a unlock key and then do

fastboot oem unlock 0x<KEY>

where <KEY> is the key you obtained.

Replacing the Recovery System

There are two prominent alternative recovery systems with the ability to install apps

Clock Work Mod (CWM) is probably most known so we will use that one. From the Website linked above download the recovery image which fits your phone.
Here you have the choice between the ordinary recovery which uses the volume buttons of your device for navigation and the touch recovery which supports the touch screen.

fastboot flash recovery <RECOVERY>.img

where <RECOVERY> is the name of the file you downloaded. For instance for a Nexus 5 and CWM 6.0.4.5 it would be

fastboot flash recovery recovery-clockwork-6.0.4.5-hammerhead.img

Installing the superuser app

Again we have several choices here

although SuperSU is the most prominent one, I would recommend getting Superuser by CWM, as it is open source and also nag-free as there is no “pro” version of it.

To install we need to get this zip archive and copy it to the device. To install it, we need to reboot into fastboot mode and then select “Recovery Mode” to get to the recovery system. Once in Recovery mode select

install zip -> choose zip from /sdcard

then browse and select the “superuser.zip” you just copied.

Once installed select

Go Back -> reboot system now

Once the system has started you should have a “Superuser” App on your device. Congratulations, you are done.

Optional: flash stock recovery

As the recovery is responsible for installing system updates it is a good idea to revert to stock version after you installed root, so the system can auto-update itself again. However a system update will also remove your superuser app so you will have to repeat the above procedure again.

If you have a Google Nexus Device, you can grab the factory images here.  There you will find a image of the stock recovery and restore it by

fastboot flash recovery recovery.img

Debugging native code with ndk-gdb using standalone CMake toolchain

I recently ran into this problem and could not find any good solution on the Internet. So next comes a small summary of the problem with hopefully enough buzzwords, so Google can lead you here.

If you want to do C++ development on Android, you need the NDK for cross compilation. It comes by default with its own build system called ndk-build, which basically is a bunch of custom makefiles. But if you are sharing code between the Android Platform and lets say plain Linux, you have likely already a build system installed. For C/C++ CMake is quite popular as it supports different platforms and compilers. Fortunately there is already a project which adds Android support to CMake. I will not cover that – instead I assume you are using it already.

Unfortunately you cant use the ndk-gdb script supplied with the NDK to debug your application as it relies on the behaviour of ndk-build. But as said earlier, ndk-build is no wizardy, but just a bunch of scripts. So it is possible to emulate the behaviour using CMake, as following:

Add the following macro to your CMakeLists.txt file

macro(ndk_gdb_debuggable TARGET_NAME)
    get_property(TARGET_LOCATION TARGET ${TARGET_NAME} PROPERTY LOCATION)
    
    # create custom target that depends on the real target so it gets executed afterwards
    add_custom_target(NDK_GDB ALL) 
    add_dependencies(NDK_GDB ${TARGET_NAME})
    
    set(GDB_SOLIB_PATH ${PROJECT_SOURCE_DIR}/obj/local/${ANDROID_NDK_ABI_NAME}/)
    
    # 1. generate essential Android Makefiles
    file(WRITE ${PROJECT_SOURCE_DIR}/jni/Android.mk "APP_ABI := ${ANDROID_NDK_ABI_NAME}\n")
    file(WRITE ${PROJECT_SOURCE_DIR}/jni/Application.mk "APP_ABI := ${ANDROID_NDK_ABI_NAME}\n")

    # 2. generate gdb.setup
    get_directory_property(PROJECT_INCLUDES DIRECTORY ${PROJECT_SOURCE_DIR} INCLUDE_DIRECTORIES)
    string(REGEX REPLACE ";" " " PROJECT_INCLUDES "${PROJECT_INCLUDES}")
    file(WRITE ${PROJECT_SOURCE_DIR}/libs/${ANDROID_NDK_ABI_NAME}/gdb.setup "set solib-search-path ${GDB_SOLIB_PATH}\n")
    file(APPEND ${PROJECT_SOURCE_DIR}/libs/${ANDROID_NDK_ABI_NAME}/gdb.setup "directory ${PROJECT_INCLUDES}\n")

    # 3. copy gdbserver executable
    file(COPY ${ANDROID_NDK}/prebuilt/android-arm/gdbserver/gdbserver DESTINATION ${PROJECT_SOURCE_DIR}/libs/${ANDROID_NDK_ABI_NAME}/)

    # 4. copy lib to obj
    add_custom_command(TARGET NDK_GDB POST_BUILD COMMAND mkdir -p ${GDB_SOLIB_PATH})
    add_custom_command(TARGET NDK_GDB POST_BUILD COMMAND cp ${TARGET_LOCATION} ${GDB_SOLIB_PATH})

    # 5. strip symbols
    add_custom_command(TARGET NDK_GDB POST_BUILD COMMAND ${CMAKE_STRIP} ${TARGET_LOCATION})
endmacro()

Then use it like

add_library(YourTarget ...)
ndk_gdb_debuggable(YourTarget)

You should now be able to use ndk-gdb with CMake, just as if you would have used ndk-build.

Note that steps 4 and 5 are optional for debugging. They just reduce the size of the library that has to be transferred to the device. If you dont care, you can just leave them out. But then the solib search path from step 2 must be set to:

file(WRITE ./libs/${ANDROID_NDK_ABI_NAME}/gdb.setup "set solib-search-path ./libs/${ANDROID_NDK_ABI_NAME}\n")

Ideally someone should integrate that in the Android toolchain linked above.

Update Merged Upstream

GNOME Project suffering the NIH disease

When I first read about GNOME dropping support for BSD and Solaris, my impression was that this is a good idea to aiming to unify limit resources and get the work done. I was also excited about the idea of the GNOME OS. I think it is necessary to keep the big picture in mind when developing the different components. Previously Ubuntu was the only project that did this and it was also the reason why I started using Ubuntu. Because it made the different parts of Linux work together to achieve the big goal of a great overall system.

But then things started to go wrong. Instead of picking existing components and giving them the final polish like Ubuntu did before, the GNOME project started developing things from scratch without any apparent reason to do so. And even worse: incompatible to existing solutions. It started with the rejection of the appindicator specification implemented by Ubuntu and KDE. At that point it was not clear to me whether the specification was broken or whether the responsible people at GNOME were just ignorant.

Then came systemd. And it started to be apparent that unfortunately it was the latter. To my knowledge Ubuntu is the biggest deployment of GNOME and it is based around the Linux ecosystem. So dropping support for Ubuntu has nothing to do with unifying limited resources. Ubuntu is your target audience, so if you should try to collaborate with a project you should collaborate with Ubuntu. My opinion on that is that some Fedora developers were pissed that the Unity interface was exclusive for Ubuntu and instead of packaging it for Fedora they started making GNOME Shell exclusive for Fedora.

Next I read about the overlay scrollbars re-developed for GNOME. While the first reaction might be the developers simply do not want to use Ubuntu technology, I think the reason is different. The developer does not seem to have any antipathy towards Ubuntu and if we look at the project he developed the scrollbars for another explanation becomes visible.

But first lets take a step back. Lets take a look at the core of GNOME. By this I mean the programming language it is written in. It is C/GObject; plain C extended with naming conventions and libraries to allow modern paradigms such as object oriented programming and events/ observer pattern. From today’s perspective one might wonder why one should choose this over C++, which integrates most of the features at the language level. But back when the GNOME project started C++ was not mature yet which meant that your program might break with the next compiler update or even the next STL update.

Therefore basing your project on plain C was a good idea. But a few years back it became obvious that programming in C/GObject seriosly lacked behind more modern programming languages like C++, Java and C# for application development.

Unfortunately instead of moving the straightforward route from C to C++, which most of C developers took when C++ matured(that was about 10 years ago), Vala was born.

So instead of using a proven and mature foundation, a new layer of indirection was created to essentially provide the same feature set. Commonly this is referred to as the “not invented here” symptom. A more derogative phrase would be reinventing the wheel..

What is sad here is that being an open source project, GNOME disregards the biggest advantage of open source software, namely standing on the shoulders of giants. With open source software you can use take an existing solution and improve upon it. This way you get the base functionality as well as the bug fixes that went in it for free. If you would develop it from scratch, you most likely would have to fix the same bugs again yourself.

To sum up here is what GNOME is losing right now

  • 30 years of language and library experience by using Vala instead of C++
  • 5 years of deployment and bug fixing by using systemd instead of extending upstart
  • 1 year of development testing and design if they reimplement overlay-scrollbars
  • 8 years of foundation development that went into Eclipse, by developing Gnome Builder from scratch
  • but most importantly: the synergy effects by collaborating with others

Do not get me wrong, I am not saying that the GNOME solutions could be replaced by existing solutions – I am saying that by extending existing solutions the GNOME project and the free software landscape would be better off as a whole.

Doing the right thing

Canonical is doing the right thing. Yes morally as well. By choosing the MIT/X11 license instead of the GPL the Banshee developer explicitly allow using Banshee in a closed-source for-profit project without giving back anything.

To start whining about moral, now that someone actually takes advantage of this right is somehow premature – in the end you had the choice how to license it, right? If you don’t like what happens change the license! Maybe a proprietary one this time, as open source obviously is not restrictive enough for you and you have to resort to “morality”.

As for me I would be perfectly happy if Canonical would simply keep 100% of the Amazon revenue – after all its their product (yes putting together the pieces makes it something new).

As a user I care most whether the product works and I use ubuntu as it works best for me. And since canonical did a great job so far providing what I want, I think the decision should be up to them whether to spend the money on shiny new icons or to give something back to the banshee developers.

For reference: this and this.

Augmented Reality on the N900

finally I reached a stage where I could upload my small augmented reality app to extras-devel, so all those who asked for it can now play with it. But be aware that it is in extras-devel for a reason. In case you are wondering what I am writing about, here is a video of the demo:

in order to make it work, you will have to print the artoolkitplus markers. Furthermore there are these controls:

  • scale the objects using the volume buttons
  • select one of the objects for scaling by tapping on it
  • tapping on the palette symbol triggers annotating by drawing on the screen
  • tapping on the sun symbol fixes the sun to the current device position
  • once fixed the shadows can be rotated using the arrow keys